Design Guide for Reaction Injection Molded Plastic Parts

copyright © 2008 Premold Corp.

Premold Corp.
5657 Frontier Road
Oconomowoc, WI 53066
ISO 9001 Certified

NEW! SIXTH EDITION

(262) 569-9044
(262) 569-9431 - FAX
email: engr@premoldcorp.com
www.premoldcorp.com
PREMOLD CORP. RIM DESIGN GUIDE

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section I</td>
<td></td>
</tr>
<tr>
<td>About the RIM Process</td>
<td>2-5</td>
</tr>
<tr>
<td>Advantages of the RIM Process</td>
<td>2</td>
</tr>
<tr>
<td>RIM Materials</td>
<td>2</td>
</tr>
<tr>
<td>Understanding the Process</td>
<td>3</td>
</tr>
<tr>
<td>Gating</td>
<td>4</td>
</tr>
<tr>
<td>Resin Flow and Venting</td>
<td>4-5</td>
</tr>
<tr>
<td>Section II</td>
<td></td>
</tr>
<tr>
<td>Design Guidelines</td>
<td>6-20</td>
</tr>
<tr>
<td>Minimizing Mold Costs</td>
<td>6-7</td>
</tr>
<tr>
<td>Parting Lines</td>
<td>8</td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>8</td>
</tr>
<tr>
<td>Draft</td>
<td>9</td>
</tr>
<tr>
<td>Ribs</td>
<td>9-10</td>
</tr>
<tr>
<td>Bosses</td>
<td>11-12</td>
</tr>
<tr>
<td>Radii and Fillets</td>
<td>12</td>
</tr>
<tr>
<td>Holes, Grooves and Slots</td>
<td>12-14</td>
</tr>
<tr>
<td>Joints Between Parts</td>
<td>14-15</td>
</tr>
<tr>
<td>Molding Small Details</td>
<td>15</td>
</tr>
<tr>
<td>Letters and Logos</td>
<td>16</td>
</tr>
<tr>
<td>Undercuts</td>
<td>17</td>
</tr>
<tr>
<td>Snap Fits and Molded-In Hooks</td>
<td>17</td>
</tr>
<tr>
<td>Threaded Inserts and Self Tapping Screws</td>
<td>18-19</td>
</tr>
<tr>
<td>Insert Molding</td>
<td>20</td>
</tr>
<tr>
<td>Section III</td>
<td></td>
</tr>
<tr>
<td>Painting & Decorating</td>
<td>20-21</td>
</tr>
<tr>
<td>Specifying Surface Finish</td>
<td>20</td>
</tr>
<tr>
<td>Part Color</td>
<td>20</td>
</tr>
<tr>
<td>Texture Painting</td>
<td>20</td>
</tr>
<tr>
<td>Color Matching</td>
<td>20-21</td>
</tr>
<tr>
<td>Multi-Colored Parts</td>
<td>21</td>
</tr>
<tr>
<td>Specifying Paint</td>
<td>21</td>
</tr>
<tr>
<td>Paint Adhesion</td>
<td>21</td>
</tr>
<tr>
<td>Decorating</td>
<td>21</td>
</tr>
<tr>
<td>Section IV</td>
<td></td>
</tr>
<tr>
<td>Design for Quality Assembly</td>
<td>22</td>
</tr>
<tr>
<td>Section V</td>
<td></td>
</tr>
<tr>
<td>Additional Information</td>
<td>23</td>
</tr>
<tr>
<td>Tolerances</td>
<td>23</td>
</tr>
<tr>
<td>Shrink Rate</td>
<td>23</td>
</tr>
<tr>
<td>Adhesive Bonding</td>
<td>23</td>
</tr>
<tr>
<td>EMI Protection</td>
<td>23</td>
</tr>
</tbody>
</table>
SECTION I - ABOUT THE RIM PROCESS

Advantages of the RIM Process

1. Low Cost Molds
 - Basic mold materials can be used ranging from plastics to aluminum. The cost savings becomes greater for larger parts.

2. Shorter Tooling Lead Times
 - Softer mold materials machine faster and are easier to change.

3. Greater Design Flexibility
 - Thin and thick walls can be used in the same part.
 - Bosses can be tall with large diameters.
 - Side actions are less costly.
 - Components can be encapsulated within the RIM part.

RIM Materials

Our polyurethane materials perform similar to ABS materials. We can offer the highest UL rating, UL 94 V-0, at a thin 1/8” wall thickness. We process the best rigid RIM materials on the market. They are formulated to provide good stiffness, impact and strength-to-weight ratio for covers and enclosures. They are more notch sensitive than ABS. Therefore, please allow sufficient radii in load bearing corners.

We also offer rigid foamed materials if you need thermal insulation, acoustic control, or weight reduction. These materials can be molded in wall thicknesses up to 1.5”.

Polyurethane materials have excellent resistance to most chemicals.
Understanding the Process:

In contrast to thermoplastics, RIM plastics are composed of two liquid components that chemically react in a mold to form a plastic part. This requires a lot less heat and pressure than melting a thermoplastic and injecting it at high pressure.

One of the liquids, a polyol, determines the physical characteristics of the molded part. Density, impact strength, flex modulus, color, and other properties are determined by the polyol used. The second liquid, an isocyanate (iso), reacts with the polyol to form a thermoset polyurethane plastic.

The pressurized day tanks shown in Fig 1 typically hold 30 or more gallons of iso and poly. Recirculation pumps and agitators maintain a homogeneous blend of the individual components. Heat exchangers maintain their temperatures. High pressure cylinders or pumps meter the iso and poly into the mix head in the proper ratio. Flow rates, pressures, and temperatures are controlled to achieve quality molded parts.

The mix head contains injector nozzles which impinge the isocyanate and polyol on each other at ultra-high velocities. This action plus an after mixer put into each mold, ensure complete mixing of the iso and poly.

![Typical RIM Processing Machine](image)

Figure 1
Typical RIM Processing Machine
Gating:

Polyurethane RIM parts are normally edge gated. The dam gate is a common edge gating method.

The iso and poly mixture leaves the mix head and flows through the after mixer in the mold at high velocity. The mixture continues through the runner until it comes to the dam gate (see Fig. 2). The dam gate’s purpose is to spread out the flow front and slow it down. The resin mixture must enter the mold in a laminar flow condition.

The low viscosity mixture can easily fill large parts containing fine details. This is accomplished using low pressures (25 to 50 psi) and low temperatures (90 to 100 degrees F).

Resin Flow and Venting:

The RIM process uses a low pressure, liquid flow process to fill the mold. This is in contrast to high pressure injection molding which uses high pressures to “pack out” the mold cavity. RIM does not use high pressure injection to squash air bubbles. Air bubbles must be avoided and the air in the mold must be vented out as the resin fills the mold (see Fig. 3).
The resin is injected at the bottom of the mold and air is vented out the top (see Fig. 4A). For this reason, RIM presses are designed to tilt the molds (see Fig. 4B). Some presses tilt more than one direction. This allows maximum design freedom for both parts and mold. Premold Corp. personnel can advise you on gating and venting.
SECTION II - DESIGN GUIDELINES

Minimizing Mold Costs

The costs of RIM molds are mainly determined by:
- CNC machining time
- toolmaker time
- CNC programmer time
- mold materials

Tooling lead times are mainly determined by the first three factors.

The RIM process allows you to use softer mold materials. Therefore, part features can be machined directly into the mold. This minimizes all four cost factors by avoiding the added costs of EDM machining, inserting, benching, polishing and hardening. Minimizing mold cost also minimizes the lead time. There are certain guidelines to be aware of to allow the toolmaker to machine part features directly into the mold.

Outside corners on the part are inside corners to be machined into the mold. There are exceptions like at the mold parting line. Consult with Premold Corp. for details pertaining to your part. These inside corners in the mold are best machined with ball end mills. Ball end mills can cut in the X, Y, Z and compound axes. This makes them very efficient for machining molds requiring complex contours. See Figure 5A. The size of the radius and the height of the adjoining wall are the main factors determining the cost and feasibility of machining the radius directly into the mold. Toolmakers do not recommend using ball end mills smaller than 0.0625” diameter (0.0313” radius on part). They do not recommend extending them out of the mill collect farther than two times their diameters (i.e. L<4R).

The efficiencies of end mills increase dramatically as their diameters increase. See Figure 5B. If you minimize the amount of your part that must have small radii, you will minimize the cost and lead time for your mold.

Inside corners on the part are outside corners in the mold. Machining them into the mold is normally not a big cost factor. Good design practice, aesthetic needs and resin flow during molding should be the primary considerations when choosing fillet radii on the part.

![Figure 5A](image)

Rounds On the Part, Fillets In the Mold
A raised rib on the part requires a groove cut into the mold. The width and height of the rib are the main factors determining the cost and feasibility of machining the groove directly into the mold. Remember the mill bit cuts a full radius end on the groove. See Figure 6. Therefore, it is more economical if you can allow full radii on the ends of your ribs.

In general, the larger the radius and the wider the rib, the faster the machining of the mold can be done and with less programming time.
Parting Lines:

It is more economical for mold design, mold construction, mold maintenance and for part production to use sharp edges on the parting lines of a part (see Fig 7A). These edges will be rounded to about $R0.020"$ by the finishing and painting process. If a radius is desired at the parting line, a larger radius results in better parts.

As a rule of thumb, it is more economical to keep the parting line all in one plane instead of having it contoured or having it change from one side of the part to another.

Wall Thickness:

Design guidelines for rigid RIM materials are very similar to thermoplastic materials. This makes it easy to design RIM parts without having to learn new techniques.

RIM polyurethane parts have wall thicknesses similar to thermoplastic parts (0.060” to 0.250”). However, RIM parts can be molded to wall thicknesses as high as 1.5”. Our resins are also much more forgiving of variations in wall thickness.

Minimum wall thicknesses to achieve UL 94 V0 and 5V ratings are typically 0.125”. Consult Premold personnel for the specific requirements of each resin.

If thicker walls are required or insulation properties are desired, it is easy to insert-mold different materials during the molding process.

The best design practice is to maintain uniform wall thicknesses. Thick areas can be cored out to help achieve this. Ribs and bosses achieve the design features needed without adding unnecessary material (see Fig 7B).
Draft:

Every vertical surface of the part needs a draft angle to allow demolding of the part. Draft of 3 degrees with respect to the direction of draw is best. Draft is especially important on interior walls because parts shrink as they cure. Draft angles as low as 0.25 degrees or 1 degree can be used depending on the mold material. Low draft angles need to be applied with care. Consult Premold Corp. before you plan for these low draft angles.

Ribs:

Ribs should be thinner than the walls they adjoin. Their thickness, including fillet radii, should be no more than 75 percent of the adjoining wall’s thickness (see Fig. 8). Thicker ribs can be used but sink marks may appear on the surface opposite the rib. In general, RIM polyurethane resins do not sink as readily as thermoplastic resins.

![Figure 8 Rib Design](image)

Ribs should be at least 0.060” thick. This is best for machining the mold and for molding the parts. Ribs this thin should be less than 0.125” in height.

Ribs can be very tall (more than 4”) if the base of the rib is at least 0.188” thick, adequate draft is allowed and the top of the rib is at least 0.060” thick.
Try to avoid ribs running perpendicular to the flow direction of the resin. The diagonal ribs shown in Fig. 10 are preferred over the bidirectional ribs. The bidirectional ribs would cause turbulence in the resin as it fills the mold. The turbulence would entrap air, resulting in voids in the surfaces of the part. Voids in the part surface require secondary labor to fill.

![Diagram of rib designs](image)

Figure 10
Design Ribs in Direction of Resin Flow
Bosses:

Bosses can be molded-in to reduce the number of parts required in an assembly. Incorporating them into the molded part also makes mating parts less costly.

Bosses located on a side wall should be incorporated into the wall (see Fig. 11). Avoid thick walls sections caused by locating bosses along walls.

![Figure 11](image1.png)

Correct
Maintain Nominal Wall

Incorrect
Excessive Wall Thickness

Bosses located close to walls should be connected to the wall with ribs. This allows air to escape the boss during molding. Gusset ribs are needed on at least 2 sides of isolated bosses. This vents air out allowing resin to completely fill the boss. The ribs can be machined off after molding if required (see Fig. 12).

![Figure 12](image2.png)

Gussets Allow Bosses to Fill Completely
All bosses must have fillet radii at their bases. Bosses must be cored out their entire height to prevent sink marks on the opposite surface.

Make the walls of the boss no more than 75 percent of the nominal wall thickness (see Fig. 13) Some compromises may have to be made when designing bosses for threaded inserts or self tapping screws. This is discussed in the Inserts section of this guide. It is preferable to core the holes rather than drill them. Molding forms a skin on the surface of the part that gives screws and inserts greater holding strength.

Radii and Fillets:

A fillet radius of 0.125” is recommended on inside corners for best results. This is best for molding and for strength. An outside radius of at least 0.030” is best for good tool life. The inner corners of bosses can use 0.060” radii to help reduce wall thickness.

Use these radii whenever you make transitions between surfaces. Radii are important because rigid urethanes are notch sensitive materials.

Holes, Grooves, and Slots:

Holes can be molded in the direction of the die draw or by hydraulically retractable core pins. They can also be drilled after the part is molded. By-pass coring can be used where there is adequate draft (see Fig. 14).
Tool costs can be minimized if slots or grooves can extend around corners (see Fig. 15).

Slots can also be formed on sloping walls with minimal tool cost (see Fig. 16).

Slots, grooves, and ribs should be oriented in the flow direction of the resin (see Fig. 17). This minimizes air entrapment caused by turbulent flow around these features. They must have fillet radii or chamfers around them for easier flow, venting, and to eliminate stress concentrations.
Figure 18 shows good proportions to use for slots to ensure good tool life and rigidity of the part.

![Figure 18](image1.png)

Basic Dimensions for Slots

- $t =$ thickness
- $w \geq t$
- $b = 1.5w$
- $L \leq 20w$

Joints Between Parts:

Good design practices recommend that one part in an assembly takes its position from its mating part. This is also true for plastic parts. You will also be more successful with RIM parts if you follow this practice. The molding process offers many options for locating parts relative to one another. Industrial designers often want to incorporate reliefs into the joints between the parts. Two common methods of achieving both are outlined in Figures 19 and 20.

![Figure 19](image2.png)

Overlap Joints

- $G =$ reveal gap
- $4xG =$ overlap
- $t/2$ or $0.060''$ whichever is greater
- $t/2$ overlap $= 3xG$

These are general guidelines to be used for overlap joints in most parts. Consult with Premold Corp. for variations from these guidelines. For thin walled parts the side walls may have to be thicker than the rest of the walls to make $t/2$ thick enough. The $t/2$ dimension gets thinner when draft is applied. Each corner radius should be as large as possible. The minimum radius is $t/6$.

Here are some guidelines for designing overlap joints with reveal gaps:

<table>
<thead>
<tr>
<th>Size of Part (length of part’s perimeter)</th>
<th>Reveal Gap “G” (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td><10”</td>
<td>.025</td>
</tr>
<tr>
<td>10 - 20”</td>
<td>.040</td>
</tr>
<tr>
<td>20 - 60”</td>
<td>.060</td>
</tr>
<tr>
<td>>60”</td>
<td>.080</td>
</tr>
</tbody>
</table>
Tongue and groove joints can be used to fully locate one plastic part relative to another. The inside portion of the groove can be localized as shown in Figure 20 or it can be continuous around the entire perimeter of the part. Use the guidelines shown in Figures 19 and 20. Allow clearances between the tongue and groove for tolerances and paint thicknesses. Allow more clearances if the tongue and groove feature extends around most of the parts’ perimeters.

These joint designs help control the horizontal or X and Y direction locations of mating parts. Fasteners or other clamping methods should be used to control the vertical or Z direction locations. The number of fasteners and their spacing depends on the size of the part and your design goals. Tall, deep section parts usually need fewer fasteners. Shallow parts may need more fasteners. Premold Corp. can help you with the details.

Molding Small Details:

Small, intricate details can be molded into parts. In general, it is easier to create them by coring out plastic (negative features) than it is to mold the details in plastic (positive features). Thin ribs and small diameter bosses can be molded in as long as good flow is provided for the resin to get into the mold and for the air to get out of the mold (see Figure 21).
Letters and Logos:

Both raised and recessed letters and logos can be molded into RIM parts. The main thing to keep in mind to minimize molding flaws, and therefore part cost, is that RIM molding is a flow process. It does not use high pressure to fill out fine details in these features. The resin must have a path to flow in and the air a path to flow out in order to fill the feature without leaving voids. The key factors are: height or depth of the feature, width of the feature, radii on the feature and space between features (S). See figures 22A and 22B. These four factors also affect mold cost and lead time as discussed in Minimizing Mold Costs.

![Figure 22A](image)

Molded in Letters and Logos

![Figure 22B](image)

Section B-B of Raised Letter

We recommend S to be a minimum of .050” typical. We recommend width to height ratios of at least 2. The radii should be at least equal to half the height. Larger radii are better. Chamfers can be used if they are at least 30 degrees off vertical.

We recommend the width to be at least .060” and the radii to be at least .031” to minimize machining costs.

The inside or outside corners of the letters and logo in Figure 22A should have radii to minimize machining costs and part costs. Whether it’s the inside or the outside corners depends on if you use raised or recessed characters. Premold Corp. can help you with the details to ensure the most cost effective design.
Undercuts:

We all try to avoid undercuts in plastic part design. However, sometimes it is very cost effective for the part to feature an undercut. Undercuts are easier to tool and mold in the RIM process. If by-pass cores cannot be designed into the part, loose piece cores can be set into the mold and ejected with the part (see Fig. 23).

![Figure 23](Mold Configurations Showing Undercuts)

Snap Fits and Molded in Hooks:

Snap fits can be used even in rigid polyurethane RIM parts (see Fig. 24). Follow the same design practice used for thermoplastic resins. Premold personnel can help with your specific applications.

![Figure 24](Snap-Fit Undercut)

Molded in hooks can speed assembly time and save the cost of hardware (see Fig. 25). They can be used to attach component parts, PC boards, tubing, electrical wires, etc. They can often be molded in with by-pass cores.

![Figure 25](Molded in Hooks)
Threaded Inserts and Self Tapping Screws:
Premold’s tests have shown that Yardley Trisert style inserts give the best performance in polyurethane parts. They are available in many different English and metric sizes. They are also available in short and regular lengths. Premold personnel can help with your application needs.

We often use the following cored holes and boss outer diameters:

<table>
<thead>
<tr>
<th>Insert Size</th>
<th>Insert Length (in.)</th>
<th>Hole Dia. (in.)</th>
<th>Preferred Boss OD (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-40</td>
<td>.172 or .234</td>
<td>.156</td>
<td>.360</td>
</tr>
<tr>
<td>6-32</td>
<td>.218 or .281</td>
<td>.198</td>
<td>.430</td>
</tr>
<tr>
<td>8-32</td>
<td>.250 or .328</td>
<td>.230</td>
<td>.490</td>
</tr>
<tr>
<td>10-24</td>
<td>.296 or .375</td>
<td>.270</td>
<td>.560</td>
</tr>
<tr>
<td>10-32</td>
<td>.296 or .375</td>
<td>.270</td>
<td>.560</td>
</tr>
<tr>
<td>1/4-20</td>
<td>.375 or .484</td>
<td>.343</td>
<td>.650</td>
</tr>
<tr>
<td>M3.0 x 0.5</td>
<td>.172 or .234</td>
<td>.156</td>
<td>.360</td>
</tr>
<tr>
<td>M3.5 x 0.6</td>
<td>.218 or .281</td>
<td>.198</td>
<td>.430</td>
</tr>
<tr>
<td>M4.0 x 0.7</td>
<td>.250 or .328</td>
<td>.230</td>
<td>.490</td>
</tr>
<tr>
<td>M5.0 x 0.8</td>
<td>.296 or .375</td>
<td>.270</td>
<td>.560</td>
</tr>
<tr>
<td>M6.0 x 1.0</td>
<td>.375 or .484</td>
<td>.343</td>
<td>.650</td>
</tr>
</tbody>
</table>

These hole diameters are minimums. Draft of 0.25 degrees per side should be added to them. Hole depths should be at least 0.120” deeper than the length of the insert.

Do not use Loctite or nylon patch thread locking screws with threaded inserts. These will cause the inserts to turn out if you try to remove the screws.

Do not allow rotation of the part being fastened against the threaded inserts. This will allow the insert to be turned into or out of the plastic part.

Self tapping screws can be used in rigid polyurethane parts. Thread cutting style screws must be used. If the screws will be removed and reinstalled more than 5 times over the life of the part, it is best to use threaded inserts. A good rule of thumb is to use a hole diameter equal to the average of the screws’ major and minor diameters. This diameter should be held at the mid point of the screw engagement length. The hole diameter should have 0.25 degree of draft per side. Therefore, the radial thread engagement will be a little more than 50% below the mid point of the screw engagement length and a little less than 50% above it. Thread engagement length should be at least two times the diameter of the screw.
When using threaded inserts or self tapping screws, provide radial clearance around screw heads and shanks to allow for manufacturing tolerances. See Figure 26.

It is important that mating parts bear against the ends of the threaded inserts installed in RIM molded plastic parts. If the mating part’s hole diameter is larger than the OD of the threaded insert, the machine screw will pull the threaded insert out of the plastic part. The plastic cannot overcome the mechanical advantage of the screw thread as the screw is tightened. See Fig. 27.
Insert Molding:
The low pressures, temperatures and viscosities of our RIM resins make it easy to insert mold or encapsulate components in RIM parts. The main criteria for the insert are:
- able to withstand 25 to 50 psi
- able to withstand 250 degrees F for short period of time during chemical reaction of resin
- will not be damaged by low viscosity resin flowing around it

Another important consideration when designing for insert molding is the shrink rate of the polyurethane resin. Most insert materials will resist shrink during molding. This can cause excessive internal stress or warp in some parts. Premold Corp. has the experience to help you avoid these problems.

SECTION III - PAINTING & DECORATING

Specifying Surface Finish:
To control quality and costs we use three classifications of surface finishes: primary, secondary and interior. These classifications communicate important information to the people who mold, finish, paint and inspect your parts. They are also important cost drivers when we quote a part.

The most important cosmetic surfaces of your part, those that are readily visible to your customers, are classified as “primary”. Surfaces that are not seen by your customer are classified as “interior”. Surfaces that are visible but with less critical cosmetics are classified as “secondary”.

These classifications can be specified on the part drawing and a detailed definition of the three classifications can be provided. This helps ensure that both your inspectors and Premold Corp’s inspectors can evaluate parts the same way.

Part Color:
While RIM parts can have molded-in color and texture, most parts are painted to achieve the color, gloss, texture and uniform appearance desired. Painting eliminates parting lines, witness lines and differences in shade that can occur due to changing wall thicknesses.

Molded-in color and texture become more practical as production quantities increase. Consult with Premold Corp. to review the details of your parts.

Painting is a manufacturing process like any other. Your best cost and quality are achieved if the parts are designed for painting manufacturability. Premold’s engineers will be happy to help you with the details.

Texture Painting:
Texture painting is done by spraying small drops of paint into the part after a basecoat of paint has been applied to completely cover the part. The size, height and population density of the small drops of paint must be specified. This is usually done by the customer providing a sample of a texture they want Premold Corp. to match. Texture standards used in the mold making industry can also be used to specify texture. In general, the smaller the paint drop and the higher their population density on the surface of the part, the more it costs to texture the part. The smallest practical paint spray texture is MT11020. Sample panels called “Q” panels are commonly used as inspection standards to check paint texture.

Color Matching:
Paint color is best established by providing Premold Corp. a sample of the color you want to match with your painted part. We have our paint supplier color scan the sample to determine the exact blend of paint required to match it.
Pantone numbers can be used for color matching but are not always accurate. The Pantone color system was developed for, and is used, in the printing industry for inks on paper substrates. It can give different results when using paints on plastic.

Metallic paint colors and specifications can range from relatively basic to extremely complex. The more metal flake and other ingredients in the metallic paint the more the painted part’s appearance varies with viewing angle and lighting conditions. This makes it more difficult to establish specifications and to evaluate paint appearance. Most metallic paints require a primer before applying the basecoat of metallic paint. These factors tend to make metallic painted parts more expensive than non-metallic parts.

Multi-Colored Parts:
If your part requires more than one color of paint, you can minimize masking and painting costs by designing a step in the part. The step serves as a guide for the operator to apply the masking tape and it provides a visual break in the surface of the part. This allows for manufacturing tolerances in the masking and painting process. See Figure 28.

![Figure 28 Paint Masking Features in the Part](image)

Specifying Paint:
You have your choice. You can simply say “color and texture to match approved Q panel” or Premold’s engineers can help you write a detailed paint specification. If you want a detailed specification, the important performance criteria to specify are color, gloss, texture, hardness, scuff and wear resistance, chemical resistance and UV resistance. We are familiar with the proper ways to quantify and measure each of these parameters.

Our paints have proven performance for medical and laboratory instruments. You automatically get superior performance even with a simple color and texture specification.

Paint Adhesion:
Surface preparation is crucial to obtaining good paint adhesion. The part’s surface must not only be clean it should not be too smooth. Premold etches all part surfaces prior to painting. We use catalyzed urethane based paints for superior performance. Our manufacturing standards for adhesion are ASTM D3359-02 Classification 4B or 5B.

Decorating:
In addition to multi-color painting, RIM parts can be silk screened or pad printed. Hot stamping is not used because RIM urethane resins are thermoset materials.

A full spectrum of colors are available to silk screen onto RIM plastic parts. Pad printing is typically more expensive than silk screening. Pad printing may be required if part contours are too extreme for silk screening or if the surface to be printed is too concave.

Silk screen ink colors are normally specified using Pantone numbers. Premold Corp. uses only chemical resistant, catalyzed inks for the most durable printed images.
SECTION IV - DESIGN FOR QUALITY ASSEMBLY

Design for Quality Assembly:

RIM parts can be designed to make it easier for you to build machines with quality fits and finishes. Premold Corp. calls this process Design for Quality Assemblies or DQA. The larger the plastic parts and the more complex the assembly, the more important it is to use DQA techniques. DQA often results in molded-in features (bosses, ribs, tabs, etc.) to help locate parts in an assembly. Plastic molding, especially the RIM process, offers you tremendous design flexibility to take advantage of these DQA features. Premold Corp’s engineers can help you choose from many different design features to accomplish good design-for-quality assemblies. By planning and designing quality into the parts during the design phase, you will save considerable time and money during both production start-up and during on-going production.

The DQA process analyzes the critical fits and tolerances in your assemblies. Some common DQA design techniques are:

- use locators to control important dimensions in an assembly. The locators should be as close as possible to the features to be controlled.
- use features to support plastic walls to limit their deflection from outside loads. These will also help prevent creep.

Good plastic part design and DQA accounts for four key factors:

- part shrinkage during molding.
- material properties of the resin.
- outside forces on your plastic part.
- assembly tolerances.

Plastic resins shrink during the molding process. Thicker cross sections of plastic tend to shrink more than thinner cross sections. RIM materials are generally unaffected by variations in wall thickness. However, if the thickness variations are significant (and depending on part geometry) unequal shrink can cause the part to distort or warp. Premold engineers can guide you in part design to minimize the risk of warp.

The most commonly overlooked plastic material property is creep. The resins we use at Premold Corp. are very structural but plastics in general creep at lower temperatures and pressures than the metals to which designers are accustomed. RIM offers the capability to mold very large parts (over 24 inches long). This makes it more important to account for creep in your design.

Creep is a slow dimensional change over time. It is a function of time, temperature and pressure (i.e. a force generating a stress on the part). The rate and amount of creep will increase if one or more of these factors increase. All materials creep, however creep accelerates in most plastics at lower temperatures and pressures than for metals. Premold engineers can help you determine whether creep could be a factor in your design and offer proven methods to minimize its effects.

Most plastic resins are not as strong or as stiff as metals. Your plastic part may deflect when an outside force or load is applied, especially if it is large (over 24 inches). Premold engineers will help you design parts that will meet your load requirements.

These factors, along with the stack-up of your assembly’s tolerances, can be addressed using proven DQA techniques. Premold Corp.’s applications engineers will work with you to understand your product requirements and help you design parts that meet them. DQA will help you achieve well-designed assemblies that improve your production efficiency and product quality.
SECTION V - ADDITIONAL INFORMATION

Tolerances:
During processing, plastic resins are heated so they can be molded or formed into parts. As the parts cool they shrink. Part geometries like unequal wall thickness, thick ribs, large bosses, and open sections tend to cause uneven shrinkage. This material characteristic is called warp. Tolerances from warp can be addressed by designing locating features into the part.

Molded plastic parts, especially RIM parts, lend themselves very well to molding in locating features to help control these tolerances. In fact, Premold Corp. has developed Design for Quality (DQA) methods to help make your multi part assemblies look good every time. For more information about how to design in locating features, please refer to the topics “Joints Between Parts” and “Design for Quality Assembly” in this design guide or contact a Premold Corp. engineer.

Typical tolerances are:

- molded dimensions:
 - for basic part geometry: +/- 0.001 in./in. or +/- 0.005 in., whichever is greater
 - for complex part geometry: +/- 0.002 in./in. or +/- 0.005 in., whichever is greater

- flatness:
 - restrained: +/- 0.0010 in./in
 - unrestrained: +/- 0.0015 in./in

- post machined dimensions: +/- 0.005 in.

Consult Premold Corp. if you need smaller tolerances than these and to verify that your part design does not require larger tolerances.

Shrink Rate:
Premold Corp.’s rigid urethane resins shrink 0.008 in./in. during the molding process. We compensate 0.001 in/in for the thermal expansion of aluminum molds. You do not need to include these factors in your design. They are factored in during the CNC programming to make the mold.

Adhesive Bonding:
Our urethane resins can easily be bonded with epoxy, cyanoacrylate or hot melt adhesives.

EMI Protection:
Premold has UL recognition to supply you with molded plastic parts with EMI paint applied. This protects you and reduces the work you have to do to get your products UL recognized.

EMI stands for electromagnetic interference. It can be generated by electronics or power supplies in your machine or other devices can generate it and cause interference with your device.

We apply a conductive paint to the inside surfaces that you specify on your part. This is the most cost effective method for providing EMI protection. Over spray of the exterior paint on top of the EMI will not diminish its effectiveness. However, if you need an electrical grounding location, let us know and we will mask the EMI surface to prevent over spray. You can minimize masking costs by being liberal with locations and tolerances.

We do not recommend applying a cosmetic coat of paint over EMI paint. EMI paint is not a durable paint and the cosmetic paint will crack or chip easily.
Copyright:
This design guide was written by Premold Corp. with some artwork contributed by Bayer Corp.* This guide is intended for use by Premold Corp., its customers and prospective customers. It is also intended to promote knowledge and use of the RIM process. The ideas conveyed here are general guidelines to cover many different situations. Premold Corp.’s engineers can assist you with your specific needs and questions. A distinct advantage of the RIM process is its ability to deviate from many of the general guidelines shown here.

PREMOLD CORP. has advanced the state-of-the-art of Reaction Injection Molding and customer service. This growth has made it possible for us to move into a new 30,000 square foot manufacturing facility. The factory is equipped with modern RIM processing equipment to serve you better.

We invite you to visit our facility and to meet our RIM and customer service experts. Let us explain how you can benefit by innovative, low cost tooling solutions for your molded plastic parts.

Please contact us at:

PREMOLD CORP.
5657 Frontier Road
Oconomowoc, WI 53066

Ph.: 262-569-9044
Fax: 262-569-9431

Email: engr@premoldcorp.com
Web site: www.premoldcorp.com